New Host and Distribution Records for Schizomyia castanopsisae (Diptera: Cecidomyiidae) from Fukuoka, Northern Kyushu, Japan

Makoto TOKUDA1, Kiyoko MATSUNAGA2, Ayman Khamis ELSAYED1,3,4, and Hiroki MATSUDA1

1Laboratory of Systems Ecology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan.
2Hikarigaoka, Chikushino City, Fukuoka 818-0036, Japan
3Department of Applied Entomology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
4Present address: The Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan

Abstract Inflorescence galls on Castanopsis sieboldii (Makino) Hatus and Castanopsis cuspidata (Thunb.) Schottky (Fagaceae) were found in Fukuoka Prefecture, northern Kyushu, Japan. Based on morphological and molecular studies, the gall inducer was identified as Schizomyia castanopsisae Elsayed & Tokuda (Diptera: Cecidomyiidae). Partial sequences (472 bp) of mitochondrial DNA cytochrome oxidase subunit I (COI) region were identical among individuals collected from C. sieboldii and C. cuspidata in Fukuoka and an individual from C. sieboldii Kagoshima, southern Kyushu. Genetic divergence between individuals collected from Kyushu and those from Hachijojima Island (the Izu Islands, Tokyo) was 0.68%. This is the first report of S. castanopsisae from northern Kyushu and C. cuspidata is a new host plant record for this gall midge.

Introduction

Schizomyia castanopsisae Elsayed et Tokuda, 2018 (Diptera: Cecidomyiidae) induces inflorescence galls on Castanopsis sieboldii (Makino) Hatus (Fagaceae) (Yu-kawa and Masuda, 1996; Tokuda et al., 2013; Elsayed et al. 2018a). Since the first finding of its galls on Okinawa Island in 1980 (Yamauchi et al., 1982), there have been no records of the galls for approximately three decades. However, in recent years, the galls were reported from Miyazaki and Kagoshima Prefectures, southern Kyushu (Nagai, 2010; Tokuda and Kawauchi, 2013a), and from the Izu Islands, Tokyo, Japan (Tokuda et al., 2012, 2013, 2015; Tokuda & Kawauchi, 2013b). In 2018, one of us KM found peculiar swellings on inflorescences of C. sieboldii and Castanopsis cuspidata (Thunb.) Schottky (Fagaceae) in Chikushino, Fukuoka, northern Kyushu (Fig. 1). The shape was very similar to galls induced by S. castanopsisae, and cecidomyiid larvae were found in the swellings.

To identify the gall inducer, we examined in this study the larval morphology of the gall midge found in Fukuoka and compared its DNA sequences with those of S. castanopsisae reported by Elsayed et al. (2018a).

Materials and Methods

1. Collecting and dissecting of galls

Inflorescence galls on C. sieboldii and C. cuspidata were collected from Haruda (N 33° 27'; E 130° 33'), Chikushino City, Fukuoka Prefecture on 19 November 2018. After measuring the size, they were dissected under a stereoscopic microscope to obtain larvae. Larvae were preserved either in 75% or 99.5% ethanol for morphological and molecular studies, respectively. Specimens used in this study were deposited in the Laboratory of Systems Ecology, Faculty of Agriculture, Saga University.

2. Morphological examination and molecular analyses

For morphological examination, some larval specimens were mounted on slides following the method shown in Elsayed et al. (2018b). Total DNA was extracted from larval specimens and a partial sequence of the mitochondrial cytochrome oxidase subunit I (COI) region was sequenced following the methods shown in Elsayed et al. (2017). The primer sets used in the analysis are: J–1718 (5’– GGA GGA TTT GGA AAT TGA TTA GTT CC–3’) (Simon et al. 1994) and COIA (5’– CCC GGT AAA ATT AAA ATA TAA ACT TC–3’) (Funk et al., 1995). In addition to specimens collected from Fukuoka, a larval specimen collected from Kagoshima Prefecture on 1 November 2012 and preserved in 99.5% ethanol (Tokuda and Kawauchi, 2013a) was used for the molecular analysis. The sequence data were registered in the DNA Data Bank of Japan (DDBJ), the European Molecular Biology Laboratory (EMBL) and GenBank under the accession numbers: LC480919-LC480921.

Results and Discussion

Galls collected from C. sieboldii and C. cuspidata in Haruda, Chikushino City were similar in size (C. sieboldii: n...
= 13, 10.0 ± 5.0 mm in diameter, 7.8 ± 2.4 mm in length; C. cuspidata: n = 4; 9.6 ± 6.0 mm in diameter; 6.1 ± 1.0 mm in length) (Fig. 1). In galls collected from C. sieboldii, four out of eight cecidomyiid larvae (third instars) were parasitized by unidentified ectoparasitoid larvae. All five cecidomyiid larvae found in galls on C. cuspidata were parasitized by ectoparasitoid larvae (so we isolated parasitized cecidomyiid larvae for molecular and morphological examinations), and two pupae of the ectoparasitoid were found in other larval chambers.

Larval morphology of gall midges collected from C. sieboldii and C. cuspidata in Fukuoka was fundamentally the same to that of S. castanopsisae shown in Elsayed et al. (2018). The partial sequence of mitochondrial COI region (472bp) of gall midges collected from C. sieboldii and C. cuspidata in Fukuoka as well as an individual collected from C. sieboldii in Kagoshima (Tokuda and Kawauchi, 2013a) were identical. Then the sequence divergence between individuals collected from Kyushu (Fukuoka and Kagoshima) and those from Hachijojima Island, the Izu Islands, Tokyo (the type locality of S. castanopsisae; Elsayed et al., 2018a) was 0.68%. Based on these results, we identify the gall midge collected from C. sieboldii and C. cuspidata in Fukuoka as S. castanopsisae. This is the first report of S. castanopsisae in northern Kyushu, and C. cuspidata is a new host record for this gall midge.

On the Izu Islands, densities of galls induced by S. castanopsisae are very high in recent years especially in southern islands such as Miyakejima, Hachijojima, and Aogashima Islands (Tokuda, 2014; Naito and Tokuda, 2018; unpublished data). In contrast, the density was reported to be very low in Kagoshima Prefecture (Tokuda and Kawauchi, 2013a). In addition, galls induced by S. castanopsisae have never been reported from the Southwest Islands of Japan after the first finding of this gall from Okinawa Island in 1980 (e.g. Yukawa and Masuda, 1996), including Tanegashima Island (Yukawa et al. 2013) and the Tokara Islands (Tokuda, 2017, 2018). So the population density of S. castanopsisae has been low in Kyushu and the Southwest Islands of Japan.

Although we have never obtained any parasitoids associated with S. castanopsisae on the Izu Islands (Elsayed et al. 2018a; unpublished data), we found an unidentified ectoparasitoid in galls collected from Fukuoka in this study. Ectoparasitoid larvae were also found in gall collected from Miyazaki Prefecture, southern Kyushu (J. Yukawa and K. Matsu, personal communications). These facts imply that parasitism by the ectoparasitoid is possibly one of the important factors regulating S. castanopsisae populations and the lack of parasitoids may contribute more or less to the recent outbreaks of S. castanopsisae on the Izu Islands.

Acknowledgements

We thank Prof. J. Yukawa (Kyushu University) for his critical reading of an early draft and valuable information on parasitoids associated with S. castanopsisae, Dr. K. Matsuo (Kyushu University) for his kind information on parasitoids associated with S. castanopsisae, and Dr. Y. Nagano (Analytical Research Center for Experimental Sciences, Saga University) for his careful assistance in molecular studies.

References


[Received: May 7, 2019; accepted: May 27, 2019]